Category Archives: Lampu LED

Lighting Effect and shadow

Dua hal yang bertolak belakang, yang satu penyebab, yang lain akibat, ternyata jika disatukan mampu menciptakan karakter dramatis yang menarik. Itulah persisnya yang terjadi dengan cahaya dan bayangan (lights and shadow).

Dalam dunia lighting design, walaupun bicaranya tentang cahaya, bukan berarti harus terang sampai ke segala sudut ruangan. Bayangkan berada di ruangan yang seluruhnya terang benderang, apa yang Anda rasakan? Mungkin datar-datar saja, tidak ada gereget-nya. Si geregetinilah yang bisa dihasilkan, salah satunya, dengan permainan lights and shadow.

Permainan cahaya dan bayangan, yang paling umum kita lihat, adalah yang dibuat dengan menempatkan kisi-kisi di jendela. Saat cahaya matahari masuk, terciptalah bayangan di dinding atau lantai, yang terbentuk dari kisi-kisi tadi. Ini adalah cara yang paling sederhana, dan kebanyakan tidak disengaja juga.

Coba perhatikan di rumah Anda, di area-area yang kerap panas karena diterpa banyak cahaya matahari. Kalau ada jendela di sana, yang kebetulan diberi kisi-kisi atau teralis berpola menarik, Anda akan menemukan bentuk bayangan yang cantik, di lantai. Jika sebelumnya Anda belum pernah memperhatikan, maka temuan ini akan jadi kejutan.

Ada pula permainan cahaya yang memang direncanakan sebelumnya, untuk menciptakan elemen dekoratif alami, yang seru. Mengapa dikatakan seru? Pasalnya, untuk melihatnya tidak bisa setiap saat, hanya saat cahaya matahari cerah jatuh pada titik yang ditentukan. Misalnya, dengan membuat barisan tembok-tembok, yang ket

ika diterpa matahari akan menciptakan bayangan garis-garis di lantai. Lebih menarik lagi, garis-garis ini akan bergerak miring mengikuti pergerakan matahari. Menakjubkan!

Tidak hanya pada ruangan, efek lights and shadows kemudian banyak diadaptasi pada produk-produk lampu, terutama lampu tidur anak-anak. Pasti sebagian besar dari Anda pernah melihat lampu tidur yang ketika dinyalakan bisa menghasilkan bayangan-bayangan lucu di dinding kamar. Entah itu bayangan yang membentuk benda-benda langit, maupun hewan dan tumbuhan.

Seru, kan, bermain hubungan sebab-akibat dalam bidang lighting? Coba ciptakan permainan lights and shadow kreasi Anda sendiri

Sumber : Lumina blog

Tagged

LED untuk rumah kecil

Ada dua hal yang jadi pokok perhatian saat menata pencahayaan untuk rumah mungil, alokasi daya dan biaya. Alokasi daya menjadi krusial, karena rumah-rumah mungil biasanya memiliki daya listrik yang tidak terlalu besar, maksimal mungkin 2200 watt.

Hal pertama yang perlu dilakukan, sebelum menata pencahayaan di rumah mungil adalah menghitung pembagian daya listrik, untuk seluruh peralatan rumah yang menggunakan listrik. Setelah mendapatkan alokasi daya listrik untuk lampu, barulah kita bisa memulai pembagian alokasi daya untuk lampu, di setiap ruangan. Prinsip dasarnya adalah alokasikan daya lebih besar pada ruangan-ruangan yang di dalamnya terdapat banyak aktivitas.

Pembagian alokasi daya ini nantinya akan membantu pada pemilihan jenis lampu (bohlam) yang akan ditempatkan. Lampu hemat energy (LHE) atau LED bisa jadi pilihan jika budget mencukupi

Jika memang budget mencukupi untuk penggunaan LED, tempatkan hanya di area-area yang tidak terkena sinar matahari atau area dimana lampu harus terus menyala. Dengan demikian konsumsi listrik di area-area tersebut bisa diminimalisasi. Misal ruang keluarga, teras depan

Setelah pembagian daya untuk setiap ruangan, lakukan juga pembagian kelompok (grouping) lampu. Misalnya, pada ruang makan yang menyatu dengan dapur, bisa kita kelompokkan menjadi tiga grup lampu. Pendant lamp (lampu gantung) sebagai penerangan utama, spot lighting sebagai accent light pada niche atau artwork dinding, dan penerangan untuk area kerja, yang biasanya dipasang di bawah kabinet gantung, kitchen set.

Setiap grup lampu tadi diwakili oleh satu stop kontak, dengan demikian akan lebih mudah mengaturnya. Saat seluruh keluarga berkumpul dan membutuhkan pencahayaan terang agar suasana lebih ceria, bisa menyalakan semua lampu. Pada waktu lain, mungkin menyalakan pendant lamp saja cukup, maka lampu-lampu lain bisa dimatikan. Malam hari saat akan tidur, cukup nyalakan spot light atau penerangan kitchen setsaja. Dengan demikian, konsumsi listrik bisa dikendalikan. Konsumsi listrik terkendali, biaya listrik pun lebih hemat.

Trik lain yang selalu jitu untuk mengendalikan konsumsi listrik pada pencahayaan, sekaligus mempermudah pengaturan mood ruangan adalah dimmer. Atur intensitas cahaya lampu sesuai dengan kebutuhan dan atmosfer yang ingin diciptakan.

Apakah ini hanya berlaku untuk rumah kecil? Tidak juga. Berhemat memang sebaiknya dilakukan dimana saja, bukan? Rumah besar maupun kecil.

Tagged

LED untuk rumah kecil

Ada dua hal yang jadi pokok perhatian saat menata pencahayaan untuk rumah mungil, alokasi daya dan biaya. Alokasi daya menjadi krusial, karena rumah-rumah mungil biasanya memiliki daya listrik yang tidak terlalu besar, maksimal mungkin 2200 watt.

Hal pertama yang perlu dilakukan, sebelum menata pencahayaan di rumah mungil adalah menghitung pembagian daya listrik, untuk seluruh peralatan rumah yang menggunakan listrik. Setelah mendapatkan alokasi daya listrik untuk lampu, barulah kita bisa memulai pembagian alokasi daya untuk lampu, di setiap ruangan. Prinsip dasarnya adalah alokasikan daya lebih besar pada ruangan-ruangan yang di dalamnya terdapat banyak aktivitas.

Pembagian alokasi daya ini nantinya akan membantu pada pemilihan jenis lampu (bohlam) yang akan ditempatkan. Lampu hemat energy (LHE) atau LED bisa jadi pilihan jika budget mencukupi

Jika memang budget mencukupi untuk penggunaan LED, tempatkan hanya di area-area yang tidak terkena sinar matahari atau area dimana lampu harus terus menyala. Dengan demikian konsumsi listrik di area-area tersebut bisa diminimalisasi. Misal ruang keluarga, teras depan

Setelah pembagian daya untuk setiap ruangan, lakukan juga pembagian kelompok (grouping) lampu. Misalnya, pada ruang makan yang menyatu dengan dapur, bisa kita kelompokkan menjadi tiga grup lampu. Pendant lamp (lampu gantung) sebagai penerangan utama, spot lighting sebagai accent light pada niche atau artwork dinding, dan penerangan untuk area kerja, yang biasanya dipasang di bawah kabinet gantung, kitchen set.

Setiap grup lampu tadi diwakili oleh satu stop kontak, dengan demikian akan lebih mudah mengaturnya. Saat seluruh keluarga berkumpul dan membutuhkan pencahayaan terang agar suasana lebih ceria, bisa menyalakan semua lampu. Pada waktu lain, mungkin menyalakan pendant lamp saja cukup, maka lampu-lampu lain bisa dimatikan. Malam hari saat akan tidur, cukup nyalakan spot light atau penerangan kitchen setsaja. Dengan demikian, konsumsi listrik bisa dikendalikan. Konsumsi listrik terkendali, biaya listrik pun lebih hemat.

Trik lain yang selalu jitu untuk mengendalikan konsumsi listrik pada pencahayaan, sekaligus mempermudah pengaturan mood ruangan adalah dimmer. Atur intensitas cahaya lampu sesuai dengan kebutuhan dan atmosfer yang ingin diciptakan.

Apakah ini hanya berlaku untuk rumah kecil? Tidak juga. Berhemat memang sebaiknya dilakukan dimana saja, bukan? Rumah besar maupun kecil.

Tagged

Pengetahuan Lighting Dasar

Basic Lighting Knowledge

Lumen (Lm)

Lumen adalah satuan Internasional dari luminous flux, yaitu besarnya cahaya yang dipancarkan oleh suatu sumber cahaya (Lampu)

Beam Angle [Satuan : Derajat]

Beam angle adalah besarnya derajat dari suatu sumber cahaya. Gunakan lampu dengan beam angle yang sempit apabila anda memerlukannya untuk menerangi suatu objek, dan gunakan angle yang lebar apabila anda memerlukannya sebagai sumber cahaya utama.

Candela (cd)

Candela adalah satuan internasional dari dari intensitas cahaya, ukuran dari sinar yang dipancarkan oleh suatu sumber cahaya pada arah tertentu.

Setiap sumber cahaya akan memiliki intensitas cahaya untuk yang berbeda untuk arah yang berbeda. Dengan kata lain, semakin besar beam angle yang dimiliki suatu sumber cahaya, maka intensitas cahayanya akan semakin kecil

LUX (lx)

Lux adalah satuan internasional dari sinar yang menyinari suatu bidang.

Lux is the international(SL)unit of illuminance, a measure of light arriving at a surface, 1 lumen per square foot equals 1 footcandle, while 1 lumen per square meter equals 1 lux .

[lux
= lumen/m2]

Color Temperature / Correlated Color Temperature(CCT)

Setiap perbedaan temperatur akan memiliki perbedaan warna sinar. Warna warm white (2,700-3,000 Kelvin), warna cool white (5,500-5,800 Kelvin), warna daylight (6,500 – 6,700 Kelvin)

Color Rendering Index(CRI)

Color Rendering Index adalah kemampuan dari suatu sumber cahaya untuk menghasilkan cahaya yang menyerupai cahaya dari sinar matahari (CRI = 100). Nilainya berkisar dari 0 hingga 100. Seakin besar nilainya, maka cahaya yang dihasilkan akan semakin menyerupai sinar matahari. Lampu LED dengan kualitas yang baik akan memiliki index CRI sebesar 80.

Efficacy(lm/W)

Eifficacy adalah tingkat efisiensi dari sebuah sumber cahaya untuk merubah listrik menjadi cahaya. Eifficacy diukur dari output lumen dibagi dengan power input watt. Semakin besar nilai Eifficacy yang dihasilkan, maka berarti lampu yang anda pilih semakin hemat energi. Apabila saat ini anda masih menggunakan lampu dengan konsumsi listrik yang besar dalam jumlah banyak, maka mulailah pertimbangkan untuk menggantinya dengan LED.

[Efficacy
= lumen / wattage]

Design Life Time

Design Life Time adalah nilai rata-rata dari sebuah produk lampu apabila dioperasikan dengan input voltage yang tepat dan stabil. Lampu LED dengan kualitas yang baik akan memiliki life time sebesar 30,000 jam

Dimmability

Tidak semua produk lampu didesign untuk bisa dioperasikan degan dimmer. Misalnya saja lampu hemat energy tidak didesain untuk bisa dioperasikan dengan dimmer. Apabila anda memerlukan lampu yang bisa dioperasikan dengan dimmer, pertimbangkan untuk menggunakan LED, karena beberapa type lampu LED memang didesain untuk dioperasikan dengan dmmer.

Tagged ,

Proses QC LED

Benar-benar seni tata cahaya yang sangat luar biasa. LED sudah menjadi standar untuk menciptakan desain yang benar-benar mampu menarik perhatian…

Tidak hanya pada bangunan ini, rasanya LED sudah menjadi teknologi “mutlak” untuk menciptakan desain pencahayaan yang luar biasa menarik, namun hemat energi. Berbagai kelebihan yang dimiliki bola lampu berteknologi terkini ini, membuatnya populer di telinga siapa saja.Lighting designer, arsitek, hingga orang awam. Jadi, sepertinya tak perlu lagi kita berpanjang lebar membicarakan keunggulan-keunggulan lampu LED ini.

Tapi tahukah Anda bagaimana LED bisa sampai di tangan Anda, para konsumen? Perjalanan apa saja yang dilaluinya, sebelum sampai di tangan manufaktur yang kemudian memasarkannya?

Umumnya kita menemukan LED sudah dalam bentuk bola lampu, yang dipasarkan oleh perusahaan-perusahaan manufaktur lampu, yang kita kenal. Tak banyak yang tahu bahwa sebelum berbentuk bola lampu, LED dijual dalam bentuk substrate (lihat gambar). LED substrate diproduksi oleh perusahaan-perusahaan manufaktur, seperti Cree, Luxeon, Seoul Semi Conductor, GE, Samsung, LG, dan sebagainya. LED substrate inilah yang kemudian dibeli oleh perusahaan manufaktur lampu, yang kemudian melakukan proses packaging, hingga berbentuk bola lampu, seperti yang biasa kita lihat.

Sebelum sampai di pasar, LED juga melalui proses uji kualitas yang dinamakan binning process. Tahap uji kualitas ini akan melahirkan tingkatan-tingkatan kualitas LED, mulai dari Bin 1, Bin 2, Bin 3, dan seterusnya. Dari sekian tingkatan, hanya LED yang memiliki kualitas Bin 1 dan 2 yang dinyatakan lolos uji. Menurut para produsen, jumlah LED yang lulus uji ini tidak pernah lebih dari 50% dari seluruh LED yang diuji. Hal ini juga menjadi salah satu alasan mengapa harga LED relatif tinggi.

Proses pengujian atau binning process ini dilakukan sendiri oleh setiap manufaktur. Artinya belum ada lembaga resmi yang melakukan pengujian dan mengeluarkan sertifikasi standardisasi kualitas LED. Hal ini memang sedikit menyulitkan bagi kita, para konsumen, untuk memastikan kualias LED yang kita beli. Satu-satunya cara untuk menjamin kualitas LED, adalah dengan membeli produk dari brand-brand terpercaya, atau sudah kita kenal kualitasnya.

Begitu pula jika kita ingin menjaga kontinuitas kualitas cahaya dan warna dari LED yang kita gunakan. Sangat mungkin terjadi perbedaan pada cahaya dan warna, antara LED yang diproduksi oleh perusahaan satu dengan lainnya. Jadi, jika kita sudah menemukan LED yang pas dengan keinginan dan kebutuhan, alangkah lebih baik jika kita tetap membeli dari perusahaan yang sama. Apalagi kalau LED-LED tadi digunakan untuk satu proyek lighting yang sama.

Apa yang kita bicarakan barusan baru sekelumit dari “misteri” LED, yang mungkin belum banyak kita ketahui. Dengan lebih mengenal teknologi lampu terkini ini, Anda akan lebih mudah menentukan, apakah kita benar-benar harus mengganti semua bola lampu dengan LED? Atau benarkah LED adalah solusi untuk segala permasalah tata pencahayaan? Kita akan berkenalan lebih jauh dengan LED, di artikel-artikel blog berikutnya

Tagged

Lampu LED yang terang

Lampu LED adalah salah satu alternatif untuk menghemat listrik. Karena konsumsi dayanya yang sangat kecil. Masalahnya kalo kita lihat di pasaran, khususnya Purwodadi tercinta adanya ya LED yang segitu saja. Padahal ada Lampu Led dengan daya pancar yang sangat kuat, sehingga cahanyanya bisa sangat terang. Dan so pasti komsumsi daya listriknya juga lebih hemat.
Berikut kutipan tentand LED Daya besar daria
LED (Light Emitting Diode) digunakan hampir pada sebagian besar perangkat elektronik seperti televisi, radio kaset, alat musik, alat kesehatan, perangkat pengujian, otomotif, dan lain-lain, sebagai lampu isyarat atau indikator.

LED mempunyai banyak keunggulan ketimbang lampu lainnya seperti: Mempunyai umur pakai yang sangat panjang, membutuhkan daya listrik yang sangat kecil (hemat energi), respon kerja yang sangat cepat dan baik.

Pada tahun 1999 Philips Lumileds Lighting Company menemukan LED yang diharapkan dapat menggantikan fungsi lampu yang biasa digunakan untuk penerangan. LED tersebut mengeluarkan cahaya yang sangat terang dengan warna putih. LED tersebut dinamakan LUXEON. Kantor R&D Lumileds berlokasi di San Jose dan Penang (Malaysia).

Kehadiran LUXEON ini membuat berbagai peluang baru dalam aplikasi yang membutuhkan cahaya terang dengan ukuran yang kompak. Sudah dapat kita temukan yaitu pada Lampu Flash Handphone Camera, terlihat pada saat flash padam, akan terlihat berwarna kuning. Saat ini Philips sedang terus mengembangkan LUXEON untuk menggantikan lampu rumah tangga dan perkantoran. Bisa dibayangkan terangnya.

Saya sempat menemukan LUXEON yang berdaya 1 watt, bentuknya menempel pada Base berbentuk seperti bintang, atau sering disebut LUXEON Star, saat ini (10/2006) dijual dengan harga sekitar rp.75.000 per buahnya.

Dikarenakan dayanya yang besar, LUXEON memerlukan pendingin (HeatSink) yang ditempelkan pada bagian belakang LED tersebut. Jika temperatur berlebihan, maka LED tersebut akan cepat mati/rusak.

Sayang sekali, LUXEON membutuhkan masukan tegangan dan daya yang cukup kritis.
Dibutuhkan tegangan masukan sebesar 3,2volt dan daya konstan sebesar maksimum hingga 350mA (untuk 1watt) , 700mA (untuk 3watt).
Aplikasi yang hanya menggunakan resistor sebagai pembatas tegangan seperti LED pada umumnya tidak disarankan untuk LUXEON ini, ketika mendapatkan daya yang sangat besar, membuat LUXEON rusak.
Foto di atas adalah aplikasi LUXEON dengan hanya menggunakan resistor, dan terbukti ketika dihubungkan dengan masukan arus yang terlalu besar membuat salah satu LUXEON mati seketika.
LUXEON DRIVER

Saya teringat IC regulator yang dapat berfungsi ganda, sebagai Pengatur Tegangan juga bisa digunakan sebagai Pengarus Arus konstan, yaitu IC LM317.
IC ini cukup murah, berkisar Rp 2.000 – Rp 4.000,- dan beberapa komponen pendukung lainnya yang jumlahnya tidak lebih dari Rp 20.000,-
Skemanya saya coba desain sebagai berikut:

Dengan Trimmer Potensiometer, dibantu Volt Meter, kita set hingga mempunyai tengangan output 3,2volt.
Arus yang keluar dari rangkaian ini adalah 560mA.

Hasil yang saya cermati, cahaya sangat terang untuk sebuah led, bahkan bisa dikatakan cahayanya seperti penggunakan lampu neon putih.
Sempat terpikir, bagus juga untuk menggantikan lampu kabin mobil, lampu belajar, dan lain-lain.

Ternyata tidak sepanas yang dikira… Jadi Heatsink yang digunakan terlalu besar untuk LED tersebut. Walau tidak begitu panas, Tetap memerlukan Pendingin.

Tagged

LED Bukan Solusi dari Segala Masalah Pencahayaan

Setelah sebelumnya sukses mengatasi masalah glare (silau) yang timbul akibat polusi cahaya yang masuk, dari pusat perbelanjaan yang berlokasi di depan restoran Barbecoa, kali ini Speirs and Major berhadapan dengan masalah energi.

Sang klien, chef Jamie Oliver dan Adam Perry Lang, sangat bersemangat untuk membuat restoran berkonsep green. Itu sebabnya, lighting architect dari Speirs and Major, Clementine Rodgers, harus memutar otak untuk menciptakan desain pencahayaan yang hemat energi, namun tetap membuat tatanannya cantik.

Poin pertama yang perlu diingat adalah karakter restoran yang ingin ditampilkan. Sang desainer interior, Tom Dixon, dan lighting designer sepakat untuk mewujudkan konsep ruang yang hangat namun tetap bersemangat (vibrant).  Untuk mewujudkan semua itu, Speirs and Major bekerja sama dengan Tom untuk memastikan bahwa desain pencahayaan yang dibuat, mampu menonjolkan elemen-elemen dekoratif menarik dari desain interior restoran.

Bagaimana kaitannya dengan penghematan energi?

Untuk mewujudkan konsep pencahayaan yang hemat energi, hampir dapat dipastikan pilihan akan jatuh pada LED. Ya, pencahayaan restoran ini didominasi oleh LED, untuk downlighting dan accent lighting, untuk menonjolkan tekstur pada dinding, dan menerangi kolom.  Sedangkan untuk menciptakan cahaya yang hangat (warm), di sekitar area dining, LED di area ini dilengkapi pula dengan warm filter.

Photo: Courtesy of James Newton

Namun untuk lampu-lampu pendant yang khusus didesain oleh Tom Dixon, Speirs and Major memilih untuk menggunakan lampu tungsten, untuk menciptakan warm glow, yang tidak bisa didapat dari LED. Akibatnya, lampu-lampu ini menyedot konsumsi energi untuk lightingsebanyak 60%.

Clementine Rodgers mencoba menjelaskan pada klien, mengenai perbandingan antara penggunaan LED dan tungsten halogen, yang pada akhirnya membuktikan LED memang masih belum bisa menandingi “hangatnya” cahaya halogen. Keputusan pun akhirnya dibuat, sang klien tidak keberatan dengan penggunaan halogen pada lampu-lampu pendant.

Beberapa pertimbangan adalah, pertama, restoran ini dilengkapi dengan dimming lighting, sehingga intensitas cahayanya dapat diatur sesuai kebutuhan dan atmosfer yang diinginkan. Kedua, lampu tungsten atau halogen memang berumur pendek, namun ini sesuai dengan manajemen restoran yang memang melakukan peremajaan bangunan setiap tiga sampai lima tahun. Jadi, semuanya memang sudah diperhitungkan dengan seksama.

Selain menggunakan sistem dimming, pencahayaan di restoran ini juga menggunakan kontrol elektronik, yang juga sangat membantu dalam usaha pengalokasian energi yang efektif. Kontrol elektronik tadi bisa diset dalam beberapa pre-programmed lighting, sehingga dengan mudah klien bisa menentukan mana lampu yang harus nyala, mana yang harus mati, sesuai kebutuhan.

Melihat tata pencahayaan dari restoran ini, bisa kita simpulkan bahwa LED bukanlah solusi dari segala permasalahan pencahayaan. Jika memang dirasa tak mungkin menggunakan LED, artinya kita harus punya perencanaan solusi lainnya.  Satu hal yang perlu diingat, hemat energi tidak selalu berarti harus mengonsumsi energi lebih sedikit. Pengalokasian energi yang efektif dan efisien, sesuai dengan kebutuhan pun merupakan sebuah tindakan penghematan energi. Bagaimana menurut Anda?

Pertimbangan dalam mendesign Lighting

Beda individu, beda maunya. Beda bangunan, beda ruang, beda pula penataannya. Kalau sudah serba berbeda begini, apa yang harus dilakukan seorang lighting designer?

Pencahayaan sebuah ruangan atau bangunan, tidak bisa disamaratakan. Tidak mungkin pencahayaan untuk  ruang kantor, disamakan dengan ruang keluarga di rumah. Tujuan utama rancang desain pencahayaan, kan, untuk menciptakan suasana yang nyaman, artinya semua harus sesuai dengan apa yang dibutuhkan manusia yang “menikmati” bangunan atau ruangan tersebut.

Nah, kalau ditelusuri dan dirangkum, paling tidak ada tiga hal yang perlu dipertimbangkan oleh seorang lighting designer, saat ia akan mendesain pencahayaan, baik untuk rumah, gedung, ruangan, atau apapun.

1.    Aktifitas yang dilakukan atau fungsi umum dari bangunan atau ruangan yang akan didesain. Hal ini berkaitan erat dengan karakter dan keinginan pemilik atau penggunanya.

2.    Desain arsitektural maupun interior dari sebuah bangunan. Mengapa aspek ini perlu diperhatikan? Soalnya, sebuah lighting design haruslah “menyatu” dengan bangunan atau ruangannya. Bagaimana bisa menyatu kalau seorang lighting designer tidak mempertimbangkan aspek desain fisik bangunan.

Untuk poin kedua ini, ada baiknya seorang lighting designer bekerja sama dengan arsitek atau desainer interior bangunan yang bersangkutan. Pasalnya dua orang tadi adalah yang paling mengenal bangunan atau ruang yang mereka desain.

3.    Alokasi daya listrik pada setiap ruangan, khususnya pada bangunan-bangunan rumah tinggal atau residensial. Kalau alokasi daya ini sudah diperhitungkan sejak awal, maka tidak akan ada keluhan penggunaan listrik yang berlebihan. Selain itu, alokasi daya ini juga mempermudah  kita untuk menentukan jumlah titik lampu yang akan dipasang.

Tanpa pertimbangan atas tiga hal di atas, bisa dikatakan mustahil akan tercipta architectural lighting yang pas. Berarti menjadi seorang lighting designer pun harus jeli melihat karakter seseorang, terutama pemilik dan pengguna bangunan. Jadi, jangan heran kalau bertemu denganlighting designer yang ternyata hobi ngobrol. Bisa jadi ini karena kebiasaan mereka, saat akan menggali informasi sebanyak-banyaknya soal kepribadian dan karakter pemilik bangunan, yang akan mereka desain pencahayaannya.

Tagged

Organic LED (LED yang digunakan TV Samsung dan Sony)

OLED

http://upload.wikimedia.org/wikipedia/commons/thumb/f/f2/OLED_EarlyProduct.JPG/220px-OLED_EarlyProduct.JPG

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Demonstration of a flexible OLED device

http://upload.wikimedia.org/wikipedia/commons/thumb/2/28/CyOLED.jpg/220px-CyOLED.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

A green emitting OLED device

An OLED (organic light-emitting diode) is a light-emitting diode (LED) in which the emissive electroluminescent layer is a film of organic compounds which emit light in response to an electric current. This layer of organic semiconductor material is situated between two electrodes. Generally, at least one of these electrodes is transparent.

There are two main families of OLEDs: those based on small molecules and those employing polymers. Adding mobile ions to an OLED creates a Light-emitting Electrochemical Cell or LEC, which has a slightly different mode of operation. OLED displays can use either passive-matrix (PMOLED) or active-matrix addressing schemes. Active-matrix OLEDs (AMOLED) require a thin-film transistor backplane to switch each individual pixel on or off, but allow for higher resolution and larger display sizes.

An OLED display works without a backlight. Thus, it can display deep black levels and can be thinner and lighter than a liquid crystal display (LCD). In low ambient light conditions such as a dark room an OLED screen can achieve a higher contrast ratio than an LCD, whether the LCD uses cold cathode fluorescent lamps or the more recently developed LED backlight. Due to its low thermal conductivity, an OLED typically emits less light per area than an inorganic LED.

OLEDs are used in television screens, computer monitors, small, portable system screens such as mobile phones and PDAs, watches, advertising, information, and indication. OLEDs are also used in large-area light-emitting elements for general illumination.

History

The first observations of electroluminescence in organic materials were in the early 1950s by A. Bernanose and co-workers at the Nancy-Université, France. They applied high-voltage alternating current (AC) fields in air to materials such as acridine orange, either deposited on or dissolved in cellulose or cellophane thin films. The proposed mechanism was either direct excitation of the dye molecules or excitation of electrons.[1][2][3][4]

In 1960, Martin Pope and co-workers at New York University developed ohmic dark-injecting electrode contacts to organic crystals.[5][6][7] They further described the necessary energetic requirements (work functions) for hole and electron injecting electrode contacts. These contacts are the basis of charge injection in all modern OLED devices. Pope’s group also first observed direct current (DC) electroluminescence under vacuum on a pure single crystal of anthracene and on anthracene crystals doped with tetracene in 1963[8] using a small area silver electrode at 400V. The proposed mechanism was field-accelerated electron excitation of molecular fluorescence.

Pope’s group reported in 1965[9] that in the absence of an external electric field, the electroluminescence in anthracene crystals is caused by the recombination of a thermalized electron and hole, and that the conducting level of anthracene is higher in energy than the exciton energy level. Also in 1965, W. Helfrich and W. G. Schneider of the National Research Council in Canada produced double injection recombination electroluminescence for the first time in an anthracene single crystal using hole and electron injecting electrodes,[10] the forerunner of modern double injection devices. In the same year, Dow Chemical researchers patented a method of preparing electroluminescent cells using high voltage (500–1500 V) AC-driven (100–3000 Hz) electrically-insulated one millimetre thin layers of a melted phosphor consisting of ground anthracene powder, tetracene, and graphite powder.[11] Their proposed mechanism involved electronic excitation at the contacts between the graphite particles and the anthracene molecules.

Device performance was limited by the poor electrical conductivity of contemporary organic materials. This was overcome by the discovery and development of highly conductive polymers.[12] For more on the history of such materials, see conductive polymers.

Electroluminescence from polymer films was first observed by Roger Partridge at the National Physical Laboratory in the United Kingdom. The device consisted of a film of poly(n-vinylcarbazole) up to 2.2 micrometres thick located between two charge injecting electrodes. The results of the project were patented in 1975[13] and published in 1983.[14][15][16][17]

The first diode device was reported at Eastman Kodak by Ching W. Tang and Steven Van Slyke in 1987.[18] This device used a novel two-layer structure with separate hole transporting and electron transporting layers such that recombination and light emission occurred in the middle of the organic layer. This resulted in a reduction in operating voltage and improvements in efficiency and led to the current era of OLED research and device production.

Research into polymer electroluminescence culminated in 1990 with J. H. Burroughes et al. at the Cavendish Laboratory in Cambridge reporting a high efficiency green light-emitting polymer based device using 100 nm thick films of poly(p-phenylene vinylene).[19]

Working principle

http://upload.wikimedia.org/wikipedia/commons/thumb/a/a9/OLED_schematic.svg/400px-OLED_schematic.svg.png

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Schematic of a bilayer OLED: 1. Cathode (−), 2. Emissive Layer, 3. Emission of radiation, 4. Conductive Layer, 5. Anode (+)

A typical OLED is composed of a layer of organic materials situated between two electrodes, the anode and cathode, all deposited on a substrate. The organic molecules are electrically conductive as a result of delocalization of pi electrons caused by conjugation over all or part of the molecule. These materials have conductivity levels ranging from insulators to conductors, and therefore are considered organic semiconductors. The highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of organic semiconductors are analogous to the valence and conduction bands of inorganic semiconductors.

Originally, the most basic polymer OLEDs consisted of a single organic layer. One example was the first light-emitting device synthesised by J. H. Burroughes et al., which involved a single layer of poly(p-phenylene vinylene). However multilayer OLEDs can be fabricated with two or more layers in order to improve device efficiency. As well as conductive properties, different materials may be chosen to aid charge injection at electrodes by providing a more gradual electronic profile,[20] or block a charge from reaching the opposite electrode and being wasted.[21] Many modern OLEDs incorporate a simple bilayer structure, consisting of a conductive layer and an emissive layer. More recent developments in OLED architecture improves quantum efficiency (up to 19%) by using a graded heterojunction.[22] In the graded heterojunction architecture, the composition of hole and electron-transport materials varies continuously within the emissive layer with a dopant emitter. The graded heterojunction architecture combines the benefits of both conventional architectures by improving charge injection while simultaneously balancing charge transport within the emissive region.[23]

During operation, a voltage is applied across the OLED such that the anode is positive with respect to the cathode. A current of electrons flows through the device from cathode to anode, as electrons are injected into the LUMO of the organic layer at the cathode and withdrawn from the HOMO at the anode. This latter process may also be described as the injection of electron holes into the HOMO. Electrostatic forces bring the electrons and the holes towards each other and they recombine forming an exciton, a bound state of the electron and hole. This happens closer to the emissive layer, because in organic semiconductors holes are generally more mobile than electrons. The decay of this excited state results in a relaxation of the energy levels of the electron, accompanied by emission of radiation whose frequency is in the visible region. The frequency of this radiation depends on the band gap of the material, in this case the difference in energy between the HOMO and LUMO.

As electrons and holes are fermions with half integer spin, an exciton may either be in a singlet state or a triplet state depending on how the spins of the electron and hole have been combined. Statistically three triplet excitons will be formed for each singlet exciton. Decay from triplet states (phosphorescence) is spin forbidden, increasing the timescale of the transition and limiting the internal efficiency of fluorescent devices. Phosphorescent organic light-emitting diodes make use of spin–orbit interactions to facilitate intersystem crossing between singlet and triplet states, thus obtaining emission from both singlet and triplet states and improving the internal efficiency.

Indium tin oxide (ITO) is commonly used as the anode material. It is transparent to visible light and has a high work function which promotes injection of holes into the HOMO level of the organic layer. A typical conductive layer may consist of PEDOT:PSS[24] as the HOMO level of this material generally lies between the workfunction of ITO and the HOMO of other commonly used polymers, reducing the energy barriers for hole injection. Metals such as barium and calcium are often used for the cathode as they have low work functions which promote injection of electrons into the LUMO of the organic layer.[25] Such metals are reactive, so require a capping layer of aluminium to avoid degradation.

Single carrier devices are typically used to study the kinetics and charge transport mechanisms of an organic material and can be useful when trying to study energy transfer processes. As current through the device is composed of only one type of charge carrier, either electrons or holes, recombination does not occur and no light is emitted. For example, electron only devices can be obtained by replacing ITO with a lower work function metal which increases the energy barrier of hole injection. Similarly, hole only devices can be made by using a cathode comprised solely of aluminium, resulting in an energy barrier too large for efficient electron injection.[26][27][28]

Material technologies

Small molecules

http://upload.wikimedia.org/wikipedia/commons/thumb/5/52/AlumQ3.png/170px-AlumQ3.png

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Alq3,[18] commonly used in small molecule OLEDs

Efficient OLEDs using small molecules were first developed by Dr. Ching W. Tang et al.[18] at Eastman Kodak. The term OLED traditionally refers specifically to this type of device, though the term SM-OLED is also in use.

Molecules commonly used in OLEDs include organometallic chelates (for example Alq3, used in the organic light-emitting device reported by Tang et al.), fluorescent and phosphorescent dyes and conjugated dendrimers. A number of materials are used for their charge transport properties, for example triphenylamine and derivatives are commonly used as materials for hole transport layers.[29] Fluorescent dyes can be chosen to obtain light emission at different wavelengths, and compounds such as perylene, rubrene and quinacridone derivatives are often used.[30] Alq3 has been used as a green emitter, electron transport material and as a host for yellow and red emitting dyes.

The production of small molecule devices and displays usually involves thermal evaporation in a vacuum. This makes the production process more expensive and of limited use for large-area devices than other processing techniques. However, contrary to polymer-based devices, the vacuum deposition process enables the formation of well controlled, homogeneous films, and the construction of very complex multi-layer structures. This high flexibility in layer design, enabling distinct charge transport and charge blocking layers to be formed, is the main reason for the high efficiencies of the small molecule OLEDs.

Coherent emission from a laser dye-doped tandem SM-OLED device, excited in the pulsed regime, has been demonstrated.[31] The emission is nearly diffraction limited with a spectral width similar to that of broadband dye lasers.[32]

Polymer light-emitting diodes

http://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Polyphenylene_vinylene.png/170px-Polyphenylene_vinylene.png

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

poly(p-phenylene vinylene), used in the first PLED[19]

Polymer light-emitting diodes (PLED), also light-emitting polymers (LEP), involve an electroluminescent conductive polymer that emits light when connected to an external voltage. They are used as a thin film for full-spectrum colour displays. Polymer OLEDs are quite efficient and require a relatively small amount of power for the amount of light produced.

Vacuum deposition is not a suitable method for forming thin films of polymers. However, polymers can be processed in solution, and spin coating is a common method of depositing thin polymer films. This method is more suited to forming large-area films than thermal evaporation. No vacuum is required, and the emissive materials can also be applied on the substrate by a technique derived from commercial inkjet printing.[33][34] However, as the application of subsequent layers tends to dissolve those already present, formation of multilayer structures is difficult with these methods. The metal cathode may still need to be deposited by thermal evaporation in vacuum. An alternative method to vacuum deposition is to deposit a Langmuir-Blodgett film.

Typical polymers used in PLED displays include derivatives of poly(p-phenylene vinylene) and polyfluorene. Substitution of side chains onto the polymer backbone may determine the colour of emitted light[35] or the stability and solubility of the polymer for performance and ease of processing.[36]

While unsubstituted poly(p-phenylene vinylene) (PPV) is typically insoluble, a number of PPVs and related poly(naphthalene vinylene)s (PNVs) that are soluble in organic solvents or water have been prepared via ring opening metathesis polymerization.[37][38][39]

Phosphorescent materials

http://upload.wikimedia.org/wikipedia/commons/thumb/c/c0/Ir%28mppy%293.png/170px-Ir%28mppy%293.png

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Ir(mppy)3, a phosphorescent dopant which emits green light.[40]

Main article: Phosphorescent organic light-emitting diode

Phosphorescent organic light emitting diodes use the principle of electrophosphorescence to convert electrical energy in an OLED into light in a highly efficient manner,[41][42] with the internal quantum efficiencies of such devices approaching 100%.[43]

Typically, a polymer such as poly(n-vinylcarbazole) is used as a host material to which an organometallic complex is added as a dopant. Iridium complexes[42] such as Ir(mppy)3[40] are currently the focus of research, although complexes based on other heavy metals such as platinum[41] have also been used.

The heavy metal atom at the centre of these complexes exhibits strong spin-orbit coupling, facilitating intersystem crossing between singlet and triplet states. By using these phosphorescent materials, both singlet and triplet excitons will be able to decay radiatively, hence improving the internal quantum efficiency of the device compared to a standard PLED where only the singlet states will contribute to emission of light.

Applications of OLEDs in solid state lighting require the achievement of high brightness with good CIE coordinates (for white emission). The use of macromolecular species like polyhedral oligomeric silsesquioxanes (POSS) in conjunction with the use of phosphorescent species such as Ir for printed OLEDs have exhibited brightnesses as high as 10,000 cd/m2.[44]

Device architectures

Structure

Bottom or top emission

Bottom emission devices use a transparent or semi-transparent bottom electrode to get the light through a transparent substrate. Top emission devices[45][46] use a transparent or semi-transparent top electrode emitting light directly. Top-emitting OLEDs are better suited for active-matrix applications as they can be more easily integrated with a non-transparent transistor backplane.

Transparent OLEDs

Transparent OLEDs use transparent or semi-transparent contacts on both sides of the device to create displays that can be made to be both top and bottom emitting (transparent). TOLEDs can greatly improve contrast, making it much easier to view displays in bright sunlight.[47] This technology can be used in Head-up displays, smart windows or augmented reality applications.

Graded Heterojunction

Graded heterojunction OLEDs gradually decrease the ratio of electron holes to electron transporting chemicals.[48] This results in almost double the quantum efficiency of existing OLEDs.

Stacked OLEDs

Stacked OLEDs use a pixel architecture that stacks the red, green, and blue subpixels on top of one another instead of next to one another, leading to substantial increase in gamut and color depth, and greatly reducing pixel gap. Currently, other display technologies have the RGB (and RGBW) pixels mapped next to each other decreasing potential resolution.

Inverted OLED

In contrast to a conventional OLED, in which the anode is placed on the substrate, an Inverted OLED uses a bottom cathode that can be connected to the drain end of an n-channel TFT especially for the low cost amorphous silicon TFT backplane useful in the manufacturing of AMOLED displays.[49]

Patterning technologies

Patternable organic light-emitting devices use a light or heat activated electroactive layer. A latent material (PEDOT-TMA) is included in this layer that, upon activation, becomes highly efficient as a hole injection layer. Using this process, light-emitting devices with arbitrary patterns can be prepared.[50]

Colour patterning can be accomplished by means of laser, such as radiation-induced sublimation transfer (RIST).[51]

Organic vapour jet printing (OVJP) uses an inert carrier gas, such as argon or nitrogen, to transport evaporated organic molecules (as in Organic Vapor Phase Deposition). The gas is expelled through a micron sized nozzle or nozzle array close to the substrate as it is being translated. This allows printing arbitrary multilayer patterns without the use of solvents.

Conventional OLED displays are formed by vapor thermal evaporation (VTE) and are patterned by shadow-mask. A mechanical mask has openings allowing the vapor to pass only on the desired location.

Backplane technologies

For a high resolution display like a TV, a TFT backplane is necessary to drive the pixels correctly. Currently, Low Temperature Polycrystalline silicon LTPS-TFT is used for commercial AMOLED displays. LTPS-TFT has variation of the performance in a display, so various compensation circuits have been reported.[45] Due to the size limitation of the excimer laser used for LTPS, the AMOLED size was limited. To cope with the hurdle related to the panel size, amorphous-silicon/microcrystalline-silicon backplanes have been reported with large display prototype demonstrations.[52]

Advantages

Further information: Comparison CRT, LCD, Plasma

http://upload.wikimedia.org/wikipedia/commons/thumb/1/12/Ecran_oled_flexible.jpg/330px-Ecran_oled_flexible.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Demonstration of a 4.1″ prototype flexible display from Sony

The different manufacturing process of OLEDs lends itself to several advantages over flat panel displays made with LCD technology.

Lower cost in the future

OLEDs can be printed onto any suitable substrate by an inkjet printer or even by screen printing,[53] theoretically making them cheaper to produce than LCD or plasma displays. However, fabrication of the OLED substrate is more costly than that of a TFT LCD, until mass production methods lower cost through scalability. Roll-roll vapour-deposition methods for organic devices do allow mass production of thousands of devices per minute for minimal cost, although this technique also induces problems in that multi-layer devices can be challenging to make due to registration issues, lining up the different printed layers to the required degree of accuracy.

Light weight & flexible plastic substrates

OLED displays can be fabricated on flexible plastic substrates leading to the possibility of flexible organic light-emitting diodes being fabricated or other new applications such as roll-up displays embedded in fabrics or clothing. As the substrate used can be flexible such as PET,[54] the displays may be produced inexpensively.

Wider viewing angles & improved brightness

OLEDs can enable a greater artificial contrast ratio (both dynamic range and static, measured in purely dark conditions) and viewing angle compared to LCDs because OLED pixels directly emit light. OLED pixel colours appear correct and unshifted, even as the viewing angle approaches 90° from normal.

Better power efficiency

LCDs filter the light emitted from a backlight, allowing a small fraction of light through so they cannot show true black, while an inactive OLED element does not produce light or consume power.[55]

Response time

OLEDs can also have a faster response time than standard LCD screens. Whereas LCD displays are capable of between 2 and 16 ms response time offering a refresh rate of 60 to 480 Hz, an OLED can theoretically have less than 0.01 ms response time, enabling up to 100,000 Hz refresh rate.

Disadvantages

Unbalanced scales.svg

This article’s Criticism or Controversy section may compromise the article’s neutral point of view of the subject. Please integrate the section’s contents into the article as a whole, or rewrite the material; see the discussion on the talk page. (November 2011)

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Light_Emitting_Polymer_display_partially_failed.jpg/220px-Light_Emitting_Polymer_display_partially_failed.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

LED display showing partial failure

http://upload.wikimedia.org/wikipedia/commons/thumb/4/42/Oled_display_alterung.jpg/220px-Oled_display_alterung.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

An old OLED display showing wear

Current costs

OLED manufacture currently requires process steps that make it extremely expensive. Specifically, it requires the use of Low-Temperature Polysilicon backplanes; LTPS backplanes in turn require laser annealing from an amorphous silicon start, so this part of the manufacturing process for AMOLEDs starts with the process costs of standard LCD, and then adds an expensive, time-consuming process that cannot currently be used on large-area glass substrates.

Lifespan

The biggest technical problem for OLEDs was the limited lifetime of the organic materials.[56] In particular, blue OLEDs historically have had a lifetime of around 14,000 hours to half original brightness (five years at 8 hours a day) when used for flat-panel displays. This is lower than the typical lifetime of LCD, LED or PDP technology—each currently rated for about 25,000–40,000 hours to half brightness, depending on manufacturer and model.[57][58] However, some manufacturers’ displays aim to increase the lifespan of OLED displays, pushing their expected life past that of LCD displays by improving light outcoupling, thus achieving the same brightness at a lower drive current.[59][60] In 2007, experimental OLEDs were created which can sustain 400 cd/m2 of luminance for over 198,000 hours for green OLEDs and 62,000 hours for blue OLEDs.[61]

Color balance issues

Additionally, as the OLED material used to produce blue light degrades significantly more rapidly than the materials that produce other colors, blue light output will decrease relative to the other colors of light. This variation in the differential color output will change the color balance of the display and is much more noticeable than a decrease in overall luminance.[62] This can be partially avoided by adjusting colour balance but this may require advanced control circuits and interaction with the user, which is unacceptable for some users. In order to delay the problem, manufacturers bias the colour balance towards blue so that the display initially has an artificially blue tint, leading to complaints of artificial-looking, over-saturated colors. More commonly, though, manufacturers optimize the size of the R, G and B subpixels to reduce the current density through the subpixel in order to equalize lifetime at full luminance. For example, a blue subpixel may be 100% larger than the green subpixel. The red subpixel may be 10% smaller than the green.

Efficiency of blue OLEDs

Improvements to the efficiency and lifetime of blue OLEDs is vital to the success of OLEDs as replacements for LCD technology. Considerable research has been invested in developing blue OLEDs with high external quantum efficiency as well as a deeper blue color.[63][64] External quantum efficiency values of 20% and 19% have been reported for red (625 nm) and green (530 nm) diodes, respectively.[65][66] However, blue diodes (430 nm) have only been able to achieve maximum external quantum efficiencies in the range of 4% to 6%.[67]

Water damage

Water can damage the organic materials of the displays. Therefore, improved sealing processes are important for practical manufacturing. Water damage may especially limit the longevity of more flexible displays.[68]

Outdoor performance

As an emissive display technology, OLEDs rely completely upon converting electricity to light, unlike most LCDs which are to some extent reflective; e-ink leads the way in efficiency with ~ 33% ambient light reflectivity, enabling the display to be used without any internal light source. The metallic cathode in an OLED acts as a mirror, with reflectance approaching 80%, leading to poor readability in bright ambient light such as outdoors. However, with the proper application of a circular polarizer and anti-reflective coatings, the diffuse reflectance can be reduced to less than 0.1%. With 10,000 fc incident illumination (typical test condition for simulating outdoor illumination), that yields an approximate photopic contrast of 5:1.

Power consumption

While an OLED will consume around 40% of the power of an LCD displaying an image which is primarily black, for the majority of images it will consume 60–80% of the power of an LCD: however it can use over three times as much power to display an image with a white background such as a document or website.[69] This can lead to reduced real-world battery life in mobile devices.

Screen burn-in

Unlike displays with a common light source, the brightness of each OLED pixel fades depending on the content displayed. The varied lifespan of the organic dyes can cause a discrepancy between red, green, and blue intensity. This leads to image persistence, also known as burn-in.[70]

UV sensitivity

OLED displays can be damaged by prolonged exposure to UV light. The most pronounced example of this can be seen with a near UV laser (such as a Bluray pointer) and can damage the display almost instantly with more than 20 mW leading to dim or dead spots where the beam is focused. This is usually avoided by installing a UV blocking filter over the panel and this can easily be seen as a clear plastic layer on the glass. Removal of this filter can lead to severe damage and an unusable display after only a few months of room light exposure.

Manufacturers and commercial uses

http://upload.wikimedia.org/wikipedia/commons/thumb/8/89/Nexus_one_screen_microscope.jpg/220px-Nexus_one_screen_microscope.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Magnified image of the AMOLED screen on the Google Nexus One smartphone using the RGBG system of the PenTile Matrix Family.

http://upload.wikimedia.org/wikipedia/commons/thumb/d/d7/OLEDScreen.jpg/220px-OLEDScreen.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

A 3.8 cm (1.5 in) OLED display from a Creative ZEN V media player

OLED technology is used in commercial applications such as displays for mobile phones and portable digital media players, car radios and digital cameras among others. Such portable applications favor the high light output of OLEDs for readability in sunlight and their low power drain. Portable displays are also used intermittently, so the lower lifespan of organic displays is less of an issue. Prototypes have been made of flexible and rollable displays which use OLEDs’ unique characteristics. Applications in flexible signs and lighting are also being developed.[71] Philips Lighting have made OLED lighting samples under the brand name “Lumiblade” available online [72] and Novaled AG based in Dresden, Germany, introduced a line of OLED desk lamps called “Victory” in September, 2011.[73]

OLEDs have been used in most Motorola and Samsung colour cell phones, as well as some HTC, LG and Sony Ericsson models.[74] Nokia has also introduced some OLED products including the N85 and the N86 8MP, both of which feature an AMOLED display. OLED technology can also be found in digital media players such as the Creative ZEN V, the iriver clix, the Zune HD and the Sony Walkman X Series.

The Google and HTC Nexus One smartphone includes an AMOLED screen, as does HTC’s own Desire and Legend phones. However due to supply shortages of the Samsung-produced displays, certain HTC models will use Sony’s SLCD displays in the future,[75] while the Google and Samsung Nexus S smartphone will use “Super Clear LCD” instead in some countries.[76]

Other manufacturers of OLED panels include Anwell Technologies Limited,[77] Chi Mei Corporation,[78] LG,[79] and others.[80]

DuPont stated in a press release in May 2010 that they can produce a 50-inch OLED TV in two minutes with a new printing technology. If this can be scaled up in terms of manufacturing, then the total cost of OLED TVs would be greatly reduced. Dupont also states that OLED TVs made with this less expensive technology can last up to 15 years if left on for a normal eight hour day.[81][82]

The use of OLEDs may be subject to patents held by Eastman Kodak, DuPont, General Electric, Royal Philips Electronics, numerous universities and others.[83] There are by now thousands of patents associated with OLEDs, both from larger corporations and smaller technology companies [1].

Samsung applications

By 2004 Samsung, South Korea‘s largest conglomerate, was the world’s largest OLED manufacturer, producing 40% of the OLED displays made in the world,[84] and as of 2010 has a 98% share of the global AMOLED market.[85] The company is leading the world OLED industry, generating $100.2 million out of the total $475 million revenues in the global OLED market in 2006.[86] As of 2006, it held more than 600 American patents and more than 2800 international patents, making it the largest owner of AMOLED technology patents.[86]

Samsung SDI announced in 2005 the world’s largest OLED TV at the time, at 21 inches (53 cm).[87] This OLED featured the highest resolution at the time, of 6.22 million pixels. In addition, the company adopted active matrix based technology for its low power consumption and high-resolution qualities. This was exceeded in January 2008, when Samsung showcased the world’s largest and thinnest OLED TV at the time, at 31 inches and 4.3 mm.[88]

In May 2008, Samsung unveiled an ultra-thin 12.1 inch laptop OLED display concept, with a 1,280×768 resolution with infinite contrast ratio.[89] According to Woo Jong Lee, Vice President of the Mobile Display Marketing Team at Samsung SDI, the company expected OLED displays to be used in notebook PCs as soon as 2010.[90]

In October 2008, Samsung showcased the world’s thinnest OLED display, also the first to be “flappable” and bendable.[91] It measures just 0.05 mm (thinner than paper), yet a Samsung staff member said that it is “technically possible to make the panel thinner”.[91] To achieve this thickness, Samsung etched an OLED panel that uses a normal glass substrate. The drive circuit was formed by low-temperature polysilicon TFTs. Also, low-molecular organic EL materials were employed. The pixel count of the display is 480 × 272. The contrast ratio is 100,000:1, and the luminance is 200 cd/m². The colour reproduction range is 100% of the NTSC standard.

In the same month, Samsung unveiled what was then the world’s largest OLED Television at 40-inch with a Full HD resolution of 1920×1080 pixel.[92] In the FPD International, Samsung stated that its 40-inch OLED Panel is the largest size currently possible. The panel has a contrast ratio of 1,000,000:1, a colour gamut of 107% NTSC, and a luminance of 200 cd/m² (peak luminance of 600 cd/m²).

At the Consumer Electronics Show (CES) in January 2010, Samsung demonstrated a laptop computer with a large, transparent OLED display featuring up to 40% transparency[93] and an animated OLED display in a photo ID card.[94]

Samsung’s latest AMOLED smartphones use their Super AMOLED trademark, with the Samsung Wave S8500 and Samsung i9000 Galaxy S being launched in June 2010. In January 2011 Samsung announced their Super AMOLED Plus displays, which offer several advances over the older Super AMOLED displays: real stripe matrix (50% more sub pixels), thinner form factor, brighter image and an 18% reduction in energy consumption.[95]

Sony applications

http://upload.wikimedia.org/wikipedia/commons/thumb/6/60/Sony_oled.jpg/220px-Sony_oled.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Sony XEL-1, the world’s first OLED TV.[96] (front)

http://upload.wikimedia.org/wikipedia/commons/thumb/3/36/Sony_XEL-1.jpg/220px-Sony_XEL-1.jpg

http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png

Sony XEL-1 (side)

The Sony CLIÉ PEG-VZ90 was released in 2004, being the first PDA to feature an OLED screen.[97] Other Sony products to feature OLED screens include the MZ-RH1 portable minidisc recorder, released in 2006[98] and the Walkman X Series.[99]

At the 2007 Las Vegas Consumer Electronics Show (CES), Sony showcased 11-inch (28 cm, resolution 960×540) and 27-inch (68.5 cm, full HD resolution at 1920×1080) OLED TV models.[100] Both claimed 1,000,000:1 contrast ratios and total thicknesses (including bezels) of 5 mm. In April 2007, Sony announced it would manufacture 1000 11-inch OLED TVs per month for market testing purposes.[101] On October 1, 2007, Sony announced that the 11-inch model, now called the XEL-1, would be released commercially;[96] the XEL-1 was first released in Japan in December 2007.[102]

In May 2007, Sony publicly unveiled a video of a 2.5-inch flexible OLED screen which is only 0.3 millimeters thick.[103] At the Display 2008 exhibition, Sony demonstrated a 0.2 mm thick 3.5 inch display with a resolution of 320×200 pixels and a 0.3 mm thick 11 inch display with 960×540 pixels resolution, one-tenth the thickness of the XEL-1.[104][105]

In July 2008, a Japanese government body said it would fund a joint project of leading firms, which is to develop a key technology to produce large, energy-saving organic displays. The project involves one laboratory and 10 companies including Sony Corp. NEDO said the project was aimed at developing a core technology to mass-produce 40 inch or larger OLED displays in the late 2010s.[106]

In October 2008, Sony published results of research it carried out with the Max Planck Institute over the possibility of mass-market bending displays, which could replace rigid LCDs and plasma screens. Eventually, bendable, transparent OLED screens could be stacked to produce 3D images with much greater contrast ratios and viewing angles than existing products.[107]

Sony exhibited a 24.5″ prototype OLED 3D television during the Consumer Electronics Show in January 2010.[108]

In January 2011, Sony announced the PlayStation Vita handheld game console (the successor to the PSP) will feature a 5-inch OLED screen.[109]

On February 17, 2011, Sony announced its 25″ OLED Professional Reference Monitor aimed at the Cinema and high end Drama Post Production market.[110]

In January 07, 2012 Sony announced the leaves ??? on OLED technology adopting “Crystal LED” as an alternative. [111]

LG applications

As of 2010, LG Electronics produces one model of OLED television, the 15 inch 15EL9500[112] and has announced a 31″ OLED 3D television for March 2011.[113] On December 26, 2011, LG officially announced “world’s largest 55″ OLED panel” to be featured at CES 2012.[114]

 

Tagged

Kaskus discount @ Multi Daya Utama

Berita gembira bagi para kaskus mania…

Untuk lebih meningkatkan penetrasi produk-produknya, terutama lampu LED yang memang sudah dikenal berkualitas, maka Multi Daya Utama

bekerjasama dengan kaskus, memberikan kaskus discount kepada seluruh member kaskus :

 

Silakan tunjukkan badge ini kepada staff di Multi Daya Utama, dan dapatkan discount khusus.

Multi Daya Utama dapat dihubungi di :

021 – 7279 8158 | multidayautama@gmail.com

 

Tagged
Follow

Get every new post delivered to your Inbox.